Cargando…
CERC: an interactive content extraction, recognition, and construction tool for clinical and biomedical text
BACKGROUND: Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visual...
Autores principales: | Lee, Eva K., Uppal, Karan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739454/ https://www.ncbi.nlm.nih.gov/pubmed/33323109 http://dx.doi.org/10.1186/s12911-020-01330-8 |
Ejemplares similares
-
Concept recognition for extracting protein interaction relations from biomedical text
por: Baumgartner, William A, et al.
Publicado: (2008) -
Extracting drug-drug interactions from biomedical texts
por: Segura-Bedmar, Isabel, et al.
Publicado: (2010) -
Preclinical pharmacology and pharmacokinetics of CERC‐301, a GluN2B‐selective N‐methyl‐D‐aspartate receptor antagonist
por: Garner, Rachel, et al.
Publicado: (2015) -
Figure Text Extraction in Biomedical Literature
por: Kim, Daehyun, et al.
Publicado: (2011) -
On Biomedical Named Entity Recognition: Experiments in Interlingual Transfer for Clinical and Social Media Texts
por: Miftahutdinov, Zulfat, et al.
Publicado: (2020)