Cargando…
Predicting functions of maize proteins using graph convolutional network
BACKGROUND: Maize (Zea mays ssp. mays L.) is the most widely grown and yield crop in the world, as well as an important model organism for fundamental research of the function of genes. The functions of Maize proteins are annotated using the Gene Ontology (GO), which has more than 40000 terms and or...
Autores principales: | Zhou, Guangjie, Wang, Jun, Zhang, Xiangliang, Guo, Maozu, Yu, Guoxian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739465/ https://www.ncbi.nlm.nih.gov/pubmed/33323113 http://dx.doi.org/10.1186/s12859-020-03745-6 |
Ejemplares similares
-
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
Integrating multiple networks for protein function prediction
por: Yu, Guoxian, et al.
Publicado: (2015) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
A Literature Review of Gene Function Prediction by Modeling Gene Ontology
por: Zhao, Yingwen, et al.
Publicado: (2020) -
Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks
por: Liu, Jin, et al.
Publicado: (2020)