Cargando…

A novel danshensu/tetramethypyrazine derivative attenuates oxidative stress-induced autophagy injury via the AMPK-mTOR-Ulk1 signaling pathway in cardiomyocytes

Myocardial ischemia/reperfusion injury (MIRI) is an inevitable and unsolved clinical problem in the treatment of ischemic heart diseases. Compound DT-010 is a novel danshensu/tetramethylpyrazine derivative and was examined as a candidate for treating MIRI. In the present study, MTT, lactate dehydrog...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Caipeng, Luo, Jingxiong, Hu, Huihui, Wang, Liang, Yu, Pei, Xu, Lipeng, Sun, Yewei, Wang, Yuqiang, Shan, Luchen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739857/
https://www.ncbi.nlm.nih.gov/pubmed/33335581
http://dx.doi.org/10.3892/etm.2020.9550
Descripción
Sumario:Myocardial ischemia/reperfusion injury (MIRI) is an inevitable and unsolved clinical problem in the treatment of ischemic heart diseases. Compound DT-010 is a novel danshensu/tetramethylpyrazine derivative and was examined as a candidate for treating MIRI. In the present study, MTT, lactate dehydrogenase assay and Hoechst staining data indicated that DT-010 attenuated tert-butylhydroperoxide (t-BHP)-induced oxidative damage by increasing cell survival, reducing cell damage and decreasing apoptosis in H9c2 cardiomyocytes. Autophagy was assessed by western blotting for microtubule-associated protein 1A/1B-light chain 3 (LC3-II and LC3-I) expression, acridine orange and monodansylcadaverine staining for autophagosome formation and the monomeric red fluorescent protein-green fluorescent protein-LC3 assay for autophagic flow. t-BHP-induced cell damage was aggravated by the autophagy agonist rapamycin and alleviated by the autophagy blocker hydroxy-chloroquine, suggesting that autophagy was involved in t-BHP-induced cardiomyocyte injury. DT-010 pretreatment significantly prevented t-BHP-induced cell damage, which was partially but significantly abolished by rapamycin and significantly improved by hydroxy-chloroquine treatment. DT-010 treatment inhibited t-BHP-induced autophagy in H9c2 cells, reduced phosphorylation of 5'-AMP-activated protein kinase (AMPK) and promoted the phosphorylation of mTOR and unc-51 like autophagy activating kinase 1 (Ulk1). To conclude, DT-010 can serve as a potential candidate for myocardial ischemia-reperfusion injury therapy. The cardioprotective effects of DT-010 could be partially attributed to its inhibition of autophagy via the AMPK-mTOR-Ulk1 signaling pathway.