Cargando…

Modern Ubasute: Public Discourse and Sentiment about Older Adults and COVID19 Using Machine Learning

This study examined public discourse and sentiment on social media regarding older adults in COVID-19. Twitter data (N=82,893) related to both older adults and COVID-19 and dated from January 23rd to May 20th, 2020, were analyzed. Classification of tweets involved supervised machine learning. Latent...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Xiaoling, Lu, Xuan, Halavanau, Alex, Xue, Jia, Sun, Yihang, Lai, Patrick Ho Lam, Wu, Zhenke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7740428/
http://dx.doi.org/10.1093/geroni/igaa057.3485
Descripción
Sumario:This study examined public discourse and sentiment on social media regarding older adults in COVID-19. Twitter data (N=82,893) related to both older adults and COVID-19 and dated from January 23rd to May 20th, 2020, were analyzed. Classification of tweets involved supervised machine learning. Latent Dirichlet Allocation was used to identify dominant themes in public discourse using, accompanied by a qualitative thematic analysis. Sentiment analysis was conducted based on the NRC Emotion Lexicon. The most common category in the coded tweets was “personal opinions” (66.2%), followed by “informative” (24.7%), “jokes/ridicule” (4.8%), and “personal experiences” (4.3%). More than one in ten (11.5%) tweets implied that the life of older adults is less valuable or downplayed the pandemic because it mostly harms older adults. A small proportion (4.6%) explicitly supported the idea of just isolating older adults. Almost three-quarters (72.9%) within “jokes/ridicule” targeted older adults, half of which were “death jokes.” The daily average of ageist content was 18%, with the highest of 52.8% on March 11th, 2020. We extracted 14 themes, such as perceptions of lockdown and risk. A bivariate Granger causality test suggested that informative tweets regarding at-risk populations increased the prevalence of tweets that downplayed the pandemic. The COVID-19 pandemic has exposed and intensified ageism in our society. Information about COVID-19 on Twitter influenced public perceptions of risk and acceptable ways of controlling the pandemic. Public education on the risk of severe illness is needed to correct misperceptions.