Cargando…

One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions

Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh–Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity,...

Descripción completa

Detalles Bibliográficos
Autores principales: Paddock, R. W., Martin, H., Ruskov, R. T., Scott, R. H. H., Garbett, W., Haines, B. M., Zylstra, A. B., Aboushelbaya, R., Mayr, M. W., Spiers, B. T., Wang, R. H. W., Norreys, P. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741005/
https://www.ncbi.nlm.nih.gov/pubmed/33280567
http://dx.doi.org/10.1098/rsta.2020.0224
_version_ 1783623663983001600
author Paddock, R. W.
Martin, H.
Ruskov, R. T.
Scott, R. H. H.
Garbett, W.
Haines, B. M.
Zylstra, A. B.
Aboushelbaya, R.
Mayr, M. W.
Spiers, B. T.
Wang, R. H. W.
Norreys, P. A.
author_facet Paddock, R. W.
Martin, H.
Ruskov, R. T.
Scott, R. H. H.
Garbett, W.
Haines, B. M.
Zylstra, A. B.
Aboushelbaya, R.
Mayr, M. W.
Spiers, B. T.
Wang, R. H. W.
Norreys, P. A.
author_sort Paddock, R. W.
collection PubMed
description Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh–Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity, in-flight aspect ratio and applied laser power aim to further reduce instability growth, resulting in a new regime where performance can be well represented by one-dimensional (1D) hydrodynamic simulations. A simulation campaign was performed using the 1D radiation-hydrodynamics code HYADES to investigate the performance that could be achieved using direct-drive implosions of liquid layer capsules, over a range of relevant energies. Results include potential gains of 0.19 on LMJ-scale systems and 0.75 on NIF-scale systems, and a reactor-level gain of 54 for an 8.5 MJ implosion. While the use of 1D simulations limits the accuracy of these results, they indicate a sufficiently high level of performance to warrant further investigations and verification of this new low-instability regime. This potentially suggests an attractive new approach to fusion energy. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
format Online
Article
Text
id pubmed-7741005
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-77410052020-12-16 One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions Paddock, R. W. Martin, H. Ruskov, R. T. Scott, R. H. H. Garbett, W. Haines, B. M. Zylstra, A. B. Aboushelbaya, R. Mayr, M. W. Spiers, B. T. Wang, R. H. W. Norreys, P. A. Philos Trans A Math Phys Eng Sci Articles Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh–Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity, in-flight aspect ratio and applied laser power aim to further reduce instability growth, resulting in a new regime where performance can be well represented by one-dimensional (1D) hydrodynamic simulations. A simulation campaign was performed using the 1D radiation-hydrodynamics code HYADES to investigate the performance that could be achieved using direct-drive implosions of liquid layer capsules, over a range of relevant energies. Results include potential gains of 0.19 on LMJ-scale systems and 0.75 on NIF-scale systems, and a reactor-level gain of 54 for an 8.5 MJ implosion. While the use of 1D simulations limits the accuracy of these results, they indicate a sufficiently high level of performance to warrant further investigations and verification of this new low-instability regime. This potentially suggests an attractive new approach to fusion energy. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. The Royal Society Publishing 2021-01-25 2020-12-07 /pmc/articles/PMC7741005/ /pubmed/33280567 http://dx.doi.org/10.1098/rsta.2020.0224 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Paddock, R. W.
Martin, H.
Ruskov, R. T.
Scott, R. H. H.
Garbett, W.
Haines, B. M.
Zylstra, A. B.
Aboushelbaya, R.
Mayr, M. W.
Spiers, B. T.
Wang, R. H. W.
Norreys, P. A.
One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
title One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
title_full One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
title_fullStr One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
title_full_unstemmed One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
title_short One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
title_sort one-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741005/
https://www.ncbi.nlm.nih.gov/pubmed/33280567
http://dx.doi.org/10.1098/rsta.2020.0224
work_keys_str_mv AT paddockrw onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT martinh onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT ruskovrt onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT scottrhh onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT garbettw onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT hainesbm onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT zylstraab onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT aboushelbayar onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT mayrmw onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT spiersbt onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT wangrhw onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions
AT norreyspa onedimensionalhydrodynamicsimulationsoflowconvergenceratiodirectdriveinertialconfinementfusionimplosions