Cargando…

Whole-beam self-focusing in fusion-relevant plasma

Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-...

Descripción completa

Detalles Bibliográficos
Autores principales: Spiers, B. T., Hill, M. P., Brown, C., Ceurvorst, L., Ratan, N., Savin, A. F., Allan, P., Floyd, E., Fyrth, J., Hobbs, L., James, S., Luis, J., Ramsay, M., Sircombe, N., Skidmore, J., Aboushelbaya, R., Mayr, M. W., Paddock, R., Wang, R. H. W., Norreys, P. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741010/
https://www.ncbi.nlm.nih.gov/pubmed/33280566
http://dx.doi.org/10.1098/rsta.2020.0159
Descripción
Sumario:Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-compressed fusion fuel. We present a systematic characterization of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in full-scale particle-in-cell simulations. We present observations of long-lived, straight channels produced by the Habara–Kodama–Tanaka whole-beam self-focusing mechanism, overcoming a critical barrier on the path to realizing fast ignition. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.