Cargando…
Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we repor...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741014/ https://www.ncbi.nlm.nih.gov/pubmed/33280559 http://dx.doi.org/10.1098/rsta.2020.0052 |
_version_ | 1783623665147969536 |
---|---|
author | Kawahito, D. Bailly-Grandvaux, M. Dozières, M. McGuffey, C. Forestier-Colleoni, P. Peebles, J. Honrubia, J. J. Khiar, B. Hansen, S. Tzeferacos, P. Wei, M. S. Krauland, C. M. Gourdain, P. Davies, J. R. Matsuo, K. Fujioka, S. Campbell, E. M. Santos, J. J. Batani, D. Bhutwala, K. Zhang, S. Beg, F. N. |
author_facet | Kawahito, D. Bailly-Grandvaux, M. Dozières, M. McGuffey, C. Forestier-Colleoni, P. Peebles, J. Honrubia, J. J. Khiar, B. Hansen, S. Tzeferacos, P. Wei, M. S. Krauland, C. M. Gourdain, P. Davies, J. R. Matsuo, K. Fujioka, S. Campbell, E. M. Santos, J. J. Batani, D. Bhutwala, K. Zhang, S. Beg, F. N. |
author_sort | Kawahito, D. |
collection | PubMed |
description | Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text] , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. |
format | Online Article Text |
id | pubmed-7741014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-77410142020-12-16 Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma Kawahito, D. Bailly-Grandvaux, M. Dozières, M. McGuffey, C. Forestier-Colleoni, P. Peebles, J. Honrubia, J. J. Khiar, B. Hansen, S. Tzeferacos, P. Wei, M. S. Krauland, C. M. Gourdain, P. Davies, J. R. Matsuo, K. Fujioka, S. Campbell, E. M. Santos, J. J. Batani, D. Bhutwala, K. Zhang, S. Beg, F. N. Philos Trans A Math Phys Eng Sci Articles Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text] , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. The Royal Society Publishing 2021-01-25 2020-12-07 /pmc/articles/PMC7741014/ /pubmed/33280559 http://dx.doi.org/10.1098/rsta.2020.0052 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Kawahito, D. Bailly-Grandvaux, M. Dozières, M. McGuffey, C. Forestier-Colleoni, P. Peebles, J. Honrubia, J. J. Khiar, B. Hansen, S. Tzeferacos, P. Wei, M. S. Krauland, C. M. Gourdain, P. Davies, J. R. Matsuo, K. Fujioka, S. Campbell, E. M. Santos, J. J. Batani, D. Bhutwala, K. Zhang, S. Beg, F. N. Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
title | Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
title_full | Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
title_fullStr | Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
title_full_unstemmed | Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
title_short | Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
title_sort | fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741014/ https://www.ncbi.nlm.nih.gov/pubmed/33280559 http://dx.doi.org/10.1098/rsta.2020.0052 |
work_keys_str_mv | AT kawahitod fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT baillygrandvauxm fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT dozieresm fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT mcguffeyc fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT forestiercolleonip fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT peeblesj fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT honrubiajj fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT khiarb fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT hansens fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT tzeferacosp fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT weims fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT kraulandcm fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT gourdainp fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT daviesjr fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT matsuok fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT fujiokas fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT campbellem fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT santosjj fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT batanid fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT bhutwalak fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT zhangs fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma AT begfn fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma |