Cargando…

Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we repor...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawahito, D., Bailly-Grandvaux, M., Dozières, M., McGuffey, C., Forestier-Colleoni, P., Peebles, J., Honrubia, J. J., Khiar, B., Hansen, S., Tzeferacos, P., Wei, M. S., Krauland, C. M., Gourdain, P., Davies, J. R., Matsuo, K., Fujioka, S., Campbell, E. M., Santos, J. J., Batani, D., Bhutwala, K., Zhang, S., Beg, F. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741014/
https://www.ncbi.nlm.nih.gov/pubmed/33280559
http://dx.doi.org/10.1098/rsta.2020.0052
_version_ 1783623665147969536
author Kawahito, D.
Bailly-Grandvaux, M.
Dozières, M.
McGuffey, C.
Forestier-Colleoni, P.
Peebles, J.
Honrubia, J. J.
Khiar, B.
Hansen, S.
Tzeferacos, P.
Wei, M. S.
Krauland, C. M.
Gourdain, P.
Davies, J. R.
Matsuo, K.
Fujioka, S.
Campbell, E. M.
Santos, J. J.
Batani, D.
Bhutwala, K.
Zhang, S.
Beg, F. N.
author_facet Kawahito, D.
Bailly-Grandvaux, M.
Dozières, M.
McGuffey, C.
Forestier-Colleoni, P.
Peebles, J.
Honrubia, J. J.
Khiar, B.
Hansen, S.
Tzeferacos, P.
Wei, M. S.
Krauland, C. M.
Gourdain, P.
Davies, J. R.
Matsuo, K.
Fujioka, S.
Campbell, E. M.
Santos, J. J.
Batani, D.
Bhutwala, K.
Zhang, S.
Beg, F. N.
author_sort Kawahito, D.
collection PubMed
description Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text] , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.
format Online
Article
Text
id pubmed-7741014
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-77410142020-12-16 Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma Kawahito, D. Bailly-Grandvaux, M. Dozières, M. McGuffey, C. Forestier-Colleoni, P. Peebles, J. Honrubia, J. J. Khiar, B. Hansen, S. Tzeferacos, P. Wei, M. S. Krauland, C. M. Gourdain, P. Davies, J. R. Matsuo, K. Fujioka, S. Campbell, E. M. Santos, J. J. Batani, D. Bhutwala, K. Zhang, S. Beg, F. N. Philos Trans A Math Phys Eng Sci Articles Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text] , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’. The Royal Society Publishing 2021-01-25 2020-12-07 /pmc/articles/PMC7741014/ /pubmed/33280559 http://dx.doi.org/10.1098/rsta.2020.0052 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Kawahito, D.
Bailly-Grandvaux, M.
Dozières, M.
McGuffey, C.
Forestier-Colleoni, P.
Peebles, J.
Honrubia, J. J.
Khiar, B.
Hansen, S.
Tzeferacos, P.
Wei, M. S.
Krauland, C. M.
Gourdain, P.
Davies, J. R.
Matsuo, K.
Fujioka, S.
Campbell, E. M.
Santos, J. J.
Batani, D.
Bhutwala, K.
Zhang, S.
Beg, F. N.
Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
title Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
title_full Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
title_fullStr Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
title_full_unstemmed Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
title_short Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
title_sort fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7741014/
https://www.ncbi.nlm.nih.gov/pubmed/33280559
http://dx.doi.org/10.1098/rsta.2020.0052
work_keys_str_mv AT kawahitod fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT baillygrandvauxm fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT dozieresm fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT mcguffeyc fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT forestiercolleonip fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT peeblesj fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT honrubiajj fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT khiarb fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT hansens fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT tzeferacosp fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT weims fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT kraulandcm fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT gourdainp fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT daviesjr fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT matsuok fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT fujiokas fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT campbellem fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT santosjj fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT batanid fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT bhutwalak fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT zhangs fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma
AT begfn fastelectrontransportdynamicsandenergydepositioninmagnetizedimplodedcylindricalplasma