Cargando…
Building, testing, and learning from network models of human aging
We have developed computational models of human aging that are based on complex networks of interactions between health attributes of individuals. Our “generic network model” (GNM) captures the population level exponential increase of mortality with age in Gompertz’s law together with the exponentia...
Autores principales: | Rutenberg, Andrew, Farrell, Spencer, Mitnitski, Arnold, Rockwood, Kenneth, Stubbings, Garrett |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7742529/ http://dx.doi.org/10.1093/geroni/igaa057.1576 |
Ejemplares similares
-
The Quantile Frailty Index: A Cutpoint-Free Approach to Biomarker-Based Health Assessment
por: Stubbings, Garrett, et al.
Publicado: (2020) -
Forecasting Individual Aging Trajectories and Survival with an Interpretable Network Model
por: Farrell, Spencer, et al.
Publicado: (2020) -
Interpretable Machine Learning of High-Dimensional Aging Health Trajectories
por: Farrell, Spencer, et al.
Publicado: (2021) -
UNDERSTANDING AGING AND FRAILTY WITH A PREDICTIVE NETWORK MODEL
por: Farrell, Spencer, et al.
Publicado: (2019) -
Generating synthetic aging trajectories with a weighted network model using cross-sectional data
por: Farrell, Spencer, et al.
Publicado: (2020)