Cargando…
Quantifying influence of human choice on the automated detection of Drosophila behavior by a supervised machine learning algorithm
Automated quantification of behavior is increasingly prevalent in neuroscience research. Human judgments can influence machine-learning-based behavior classification at multiple steps in the process, for both supervised and unsupervised approaches. Such steps include the design of the algorithm for...
Autores principales: | Leng, Xubo, Wohl, Margot, Ishii, Kenichi, Nayak, Pavan, Asahina, Kenta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7743940/ https://www.ncbi.nlm.nih.gov/pubmed/33326445 http://dx.doi.org/10.1371/journal.pone.0241696 |
Ejemplares similares
-
Layered roles of fruitless isoforms in specification and function of male aggression-promoting neurons in Drosophila
por: Wohl, Margot, et al.
Publicado: (2020) -
Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons
por: Ishii, Kenichi, et al.
Publicado: (2020) -
Drosophila Tachykininergic Neurons Modulate the Activity of Two Groups of Receptor-Expressing Neurons to Regulate Aggressive Tone
por: Wohl, Margot P., et al.
Publicado: (2023) -
A neurogenetic mechanism of experience-dependent suppression of aggression
por: Ishii, Kenichi, et al.
Publicado: (2022) -
Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms
por: Choi, Soyoung, et al.
Publicado: (2022)