Cargando…
Virus detection using nanoparticles and deep neural network–enabled smartphone system
Emerging and reemerging infections present an ever-increasing challenge to global health. Here, we report a nanoparticle-enabled smartphone (NES) system for rapid and sensitive virus detection. The virus is captured on a microchip and labeled with specifically designed platinum nanoprobes to induce...
Autores principales: | Draz, Mohamed S., Vasan, Anish, Muthupandian, Aradana, Kanakasabapathy, Manoj Kumar, Thirumalaraju, Prudhvi, Sreeram, Aparna, Krishnakumar, Sanchana, Yogesh, Vinish, Lin, Wenyu, Yu, Xu G., Chung, Raymond T., Shafiee, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744080/ https://www.ncbi.nlm.nih.gov/pubmed/33328239 http://dx.doi.org/10.1126/sciadv.abd5354 |
Ejemplares similares
-
Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score
por: Dimitriadis, Irene, et al.
Publicado: (2019) -
Validation of a smartphone-based device to measure concentration, motility, and morphology in swine ejaculates
por: Suárez-Trujillo, Aridany, et al.
Publicado: (2022) -
Consistency and objectivity of automated embryo assessments using deep neural networks
por: Bormann, Charles L., et al.
Publicado: (2020) -
Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality
por: Thirumalaraju, Prudhvi, et al.
Publicado: (2021) -
DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics
por: Draz, Mohamed Shehata, et al.
Publicado: (2018)