Cargando…

Effect of gold nanoparticle incorporation into oil-swollen surfactant lamellar membranes

An oil-swollen surfactant membrane is employed to measure the effects of incorporated hydrophobically functionalized gold nanoparticles (AuNPs) on the structure and dynamics of the membranes. While maintaining an average AuNP diameter of approximately 5 nm, the membrane thickness was varied from 5 n...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagao, Michihiro, Bradbury, Robert, Ansar, Siyam M., Kitchens, Christopher L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744122/
https://www.ncbi.nlm.nih.gov/pubmed/33344674
http://dx.doi.org/10.1063/4.0000041
Descripción
Sumario:An oil-swollen surfactant membrane is employed to measure the effects of incorporated hydrophobically functionalized gold nanoparticles (AuNPs) on the structure and dynamics of the membranes. While maintaining an average AuNP diameter of approximately 5 nm, the membrane thickness was varied from 5 nm to 7.5 nm by changing the amount of oil in the membrane. The membranes become softer as the proportion of oil is increased, while the thickness fluctuations become slower. We attribute this to an increased fluctuation wavelength. Incorporation of AuNPs in the membrane induces membrane thinning and softening. Oil molecules surround the nanoparticles in the membrane and help their relatively homogeneous distribution. AuNPs significantly alter the membrane's structure and dynamics through thinning of the membrane, increased compressibility, and possible diffusion of AuNPs inside the membrane.