Cargando…
An algorithm to generate correlated input-parameters to be used in probabilistic sensitivity analyses
Background: Assessment of uncertainty in cost-effectiveness analyses (CEAs) is paramount for decision-making. Probabilistic sensitivity analysis (PSA) estimates uncertainty by varying all input parameters simultaneously within predefined ranges; however, PSA often ignores correlations between parame...
Autores principales: | Neine, Mohamed, Curran, Desmond |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Routledge
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744153/ https://www.ncbi.nlm.nih.gov/pubmed/33403091 http://dx.doi.org/10.1080/20016689.2020.1857052 |
Ejemplares similares
-
Expectancy Learning from Probabilistic Input by Infants
por: Romberg, Alexa R., et al.
Publicado: (2013) -
A New Approach for Sampling Ordered Parameters in Probabilistic Sensitivity Analysis
por: Ren, Shijie, et al.
Publicado: (2017) -
Cost-effectiveness of the recombinant zoster vaccine in the German population aged ≥60 years old
por: Van Oorschot, Desirée, et al.
Publicado: (2018) -
Probabilistic-Input, Noisy Conjunctive Models for Cognitive Diagnosis
por: Zhan, Peida, et al.
Publicado: (2018) -
Unsupervised, low latency anomaly detection of algorithmically generated domain names by generative probabilistic modeling
por: Raghuram, Jayaram, et al.
Publicado: (2014)