Cargando…
Review of Value of CT Texture Analysis and Machine Learning in Differentiating Fat-Poor Renal Angiomyolipoma from Renal Cell Carcinoma
The diagnosis of patients with suspected angiomyolipoma relies on the detection of abundant macroscopic intralesional fat, which is always of no use to differentiate fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma and diagnosis of fp-AML excessively depends on individual experience. Textu...
Autores principales: | Zhang, Yuhan, Li, Xu, Lv, Yang, Gu, Xinquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744193/ https://www.ncbi.nlm.nih.gov/pubmed/33364422 http://dx.doi.org/10.18383/j.tom.2020.00039 |
Ejemplares similares
-
Contrast-Enhanced CT Texture Analysis for Distinguishing Fat-Poor Renal
Angiomyolipoma From Chromophobe Renal Cell Carcinoma
por: Yang, Guangjie, et al.
Publicado: (2019) -
A convention-radiomics CT nomogram for differentiating fat-poor angiomyolipoma from clear cell renal cell carcinoma
por: Ma, Yanqing, et al.
Publicado: (2021) -
CT radiomics for differentiating fat poor angiomyolipoma from clear cell renal cell carcinoma: Systematic review and meta-analysis
por: Dehghani Firouzabadi, Fatemeh, et al.
Publicado: (2023) -
Predictive Value of CT-Based Radiomics in Distinguishing Renal Angiomyolipomas with Minimal Fat from Other Renal Tumors
por: Han, Zhiwei, et al.
Publicado: (2022) -
A CT-Based Tumoral and Mini-Peritumoral Radiomics Approach: Differentiate Fat-Poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma
por: Ma, Yanqing, et al.
Publicado: (2021)