Cargando…
Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification
Purpose: Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly, more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNN-based methods have the potential to extract valu...
Autores principales: | Jansen, Mariëlle J. A., Kuijf, Hugo J., Dhara, Ashis K., Weaver, Nick A., Jan Biessels, Geert, Strand, Robin, Pluim, Josien P. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744252/ https://www.ncbi.nlm.nih.gov/pubmed/33344673 http://dx.doi.org/10.1117/1.JMI.7.6.064003 |
Ejemplares similares
-
Rapid quantification of COVID-19 pneumonia burden from computed tomography with convolutional long short-term memory networks
por: Killekar, Aditya, et al.
Publicado: (2022) -
Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation
por: Liu, Renfei, et al.
Publicado: (2022) -
Multiple comparison correction methods for whole-body magnetic resonance imaging
por: Breznik, Eva, et al.
Publicado: (2020) -
Faster dense deformable image registration by utilizing both CPU and GPU
por: Ekström, Simon, et al.
Publicado: (2021) -
Transfer learning for data‐efficient abdominal muscle segmentation with convolutional neural networks
por: McSweeney, Dónal M., et al.
Publicado: (2022)