Cargando…
An Enolase Inhibitor for the Targeted Treatment of ENO1-Deleted Cancers
Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We previously identified a subset of cancers harboring homozygous deletion of the glycolytic enzyme Enolase (ENO1) with exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic st...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744354/ https://www.ncbi.nlm.nih.gov/pubmed/33230295 http://dx.doi.org/10.1038/s42255-020-00313-3 |
Sumario: | Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We previously identified a subset of cancers harboring homozygous deletion of the glycolytic enzyme Enolase (ENO1) with exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic strategy known as collateral lethality. Here, we show that a small molecule Enolase inhibitor, POMHEX, can selectively kill ENO1-deleted glioma cells at low nanomolar concentrations and eradicate intracranial orthotopic ENO1-deleted tumors in mice at doses well-tolerated in non-human primates. Our data provide in vivo proof-of-principal for the power of collateral lethality in precision oncology and demonstrate the utility of POMHEX for glycolysis inhibition with potential across a range of therapeutic settings. |
---|