Cargando…
Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors
We developed a computational method named Molecule Optimization by Reinforcement Learning and Docking (MORLD) that automatically generates and optimizes lead compounds by combining reinforcement learning and docking to develop predicted novel inhibitors. This model requires only a target protein str...
Autores principales: | Jeon, Woosung, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744578/ https://www.ncbi.nlm.nih.gov/pubmed/33328504 http://dx.doi.org/10.1038/s41598-020-78537-2 |
Ejemplares similares
-
An enhanced variant effect predictor based on a deep generative model and the Born-Again Networks
por: Kim, Ha Young, et al.
Publicado: (2021) -
Autonomous Single-Molecule
Manipulation Based on Reinforcement
Learning
por: Ramsauer, Bernhard, et al.
Publicado: (2023) -
Deep reinforcement learning-aided autonomous navigation with landmark generators
por: Wang, Xuanzhi, et al.
Publicado: (2023) -
Molecule generation using transformers and policy gradient reinforcement learning
por: Mazuz, Eyal, et al.
Publicado: (2023) -
V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization
por: Choi, Jieun, et al.
Publicado: (2021)