Cargando…
A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria
Machine learning has recently emerged as a promising tool for inferring multi-omic relationships in biological systems. At the same time, genome-scale metabolic models (GSMMs) can be integrated with such multi-omic data to refine phenotypic predictions. In this work, we use a multi-omic machine lear...
Autores principales: | Vijayakumar, Supreeta, Rahman, Pattanathu K.S.M., Angione, Claudio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744713/ https://www.ncbi.nlm.nih.gov/pubmed/33354660 http://dx.doi.org/10.1016/j.isci.2020.101818 |
Ejemplares similares
-
Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic data from the cyanobacterium Synechococcus sp. PCC 7002
por: Vijayakumar, Supreeta, et al.
Publicado: (2021) -
Machine and deep learning meet genome-scale metabolic modeling
por: Zampieri, Guido, et al.
Publicado: (2019) -
In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production
por: Occhipinti, Annalisa, et al.
Publicado: (2018) -
Social dynamics modeling of chrono-nutrition
por: Di Stefano, Alessandro, et al.
Publicado: (2019) -
Bioremediation in marine ecosystems: a computational study combining ecological modeling and flux balance analysis
por: Taffi, Marianna, et al.
Publicado: (2014)