Cargando…

Fibrosis following Acute Skeletal Muscle Injury: Mitigation and Reversal Potential in the Clinic

Skeletal muscle injuries occur often in athletics and in daily life. In minor injuries, muscles are able to regenerate completely and recover their functional capabilities. However, in the case of severe injuries, the injured muscle cannot recover to a functional level because of the formation of fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gardner, Tyler, Kenter, Keith, Li, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745048/
https://www.ncbi.nlm.nih.gov/pubmed/33376749
http://dx.doi.org/10.1155/2020/7059057
Descripción
Sumario:Skeletal muscle injuries occur often in athletics and in daily life. In minor injuries, muscles are able to regenerate completely and recover their functional capabilities. However, in the case of severe injuries, the injured muscle cannot recover to a functional level because of the formation of fibrous scar tissue. The physical barrier of scars is significantly challenged in both research and clinical treatment. Fibrous scar tissue not only limits cells' migration, but also contributes to normal tissue biomechanical properties. This scar formation creates an unsuitable environment for tissue structure resulting in frequent pain. Antifibrosis treatment is one of the major strategies used to augment muscle regeneration and accelerate its functional recovery. This review will discuss the currently available methods for improving muscle regeneration with a specific focus on antifibrosis applications. We also discussed several novel hypotheses and clinical applications in muscle fibrosis treatment currently in practice.