Cargando…

The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice

Leishmaniasis is a group of infectious and noncontagious severe parasitic diseases, caused by protozoans of the Leishmania genus. Natural products characterize a rich source of prospective chemical entities for the development of new effective drugs for neglected diseases. Scientific evaluation of m...

Descripción completa

Detalles Bibliográficos
Autores principales: Almayouf, Mina A., El-khadragy, Manal, Awad, Manal A., Alolayan, Ebtesam M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745064/
https://www.ncbi.nlm.nih.gov/pubmed/33252120
http://dx.doi.org/10.1042/BSR20202672
_version_ 1783624541675716608
author Almayouf, Mina A.
El-khadragy, Manal
Awad, Manal A.
Alolayan, Ebtesam M.
author_facet Almayouf, Mina A.
El-khadragy, Manal
Awad, Manal A.
Alolayan, Ebtesam M.
author_sort Almayouf, Mina A.
collection PubMed
description Leishmaniasis is a group of infectious and noncontagious severe parasitic diseases, caused by protozoans of the Leishmania genus. Natural products characterize a rich source of prospective chemical entities for the development of new effective drugs for neglected diseases. Scientific evaluation of medicinal plants has made it possible to use some metabolites from flavonoids and polyphenols compounds for the treatment of parasitic diseases. Therefore, we aimed in the present study to evaluate the protective effect of silver nanoparticles (Ag-NPs) biosynthesized using Fig and Olive extracts (NFO) against Cutaneous leishmaniasis in female Balb/c mice. A total of 70 mice were used and divided into seven groups. Treatment was initiated when local lesions were apparent, we found that Fig and Olive extracts were found to be a good source for the synthesis of (Ag-NPs), their formation was confirmed by color change and stability in solution. Nanoparticles biosynthesized using Fig and Olive extracts induced a reduction in the average size of cutaneous leishmaniasis lesions compared with the untreated mice. Moreover, nanoparticles treatment decreased oxidative stress (LPO, NO), down-regulation gene expression levels (TNF-α, IL-1β, and BAX), and this antileishmanial activity of nanoparticles was associated with enhanced antioxidant enzyme activities. In addition, histopathological evaluation proved the antileishmanial activity of nanoparticles compared with the positive control. Therefore, we aimed in the present study to evaluate the protective effect of silver nanoparticles biosynthesized using Fig and Olive extracts against cutaneous lesions induced by Leishmania major infection through their anti-inflammatory, antioxidant activities, and faster clinical efficacy than standard pentavalent antimonial treatment.
format Online
Article
Text
id pubmed-7745064
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-77450642020-12-29 The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice Almayouf, Mina A. El-khadragy, Manal Awad, Manal A. Alolayan, Ebtesam M. Biosci Rep Biotechnology Leishmaniasis is a group of infectious and noncontagious severe parasitic diseases, caused by protozoans of the Leishmania genus. Natural products characterize a rich source of prospective chemical entities for the development of new effective drugs for neglected diseases. Scientific evaluation of medicinal plants has made it possible to use some metabolites from flavonoids and polyphenols compounds for the treatment of parasitic diseases. Therefore, we aimed in the present study to evaluate the protective effect of silver nanoparticles (Ag-NPs) biosynthesized using Fig and Olive extracts (NFO) against Cutaneous leishmaniasis in female Balb/c mice. A total of 70 mice were used and divided into seven groups. Treatment was initiated when local lesions were apparent, we found that Fig and Olive extracts were found to be a good source for the synthesis of (Ag-NPs), their formation was confirmed by color change and stability in solution. Nanoparticles biosynthesized using Fig and Olive extracts induced a reduction in the average size of cutaneous leishmaniasis lesions compared with the untreated mice. Moreover, nanoparticles treatment decreased oxidative stress (LPO, NO), down-regulation gene expression levels (TNF-α, IL-1β, and BAX), and this antileishmanial activity of nanoparticles was associated with enhanced antioxidant enzyme activities. In addition, histopathological evaluation proved the antileishmanial activity of nanoparticles compared with the positive control. Therefore, we aimed in the present study to evaluate the protective effect of silver nanoparticles biosynthesized using Fig and Olive extracts against cutaneous lesions induced by Leishmania major infection through their anti-inflammatory, antioxidant activities, and faster clinical efficacy than standard pentavalent antimonial treatment. Portland Press Ltd. 2020-12-16 /pmc/articles/PMC7745064/ /pubmed/33252120 http://dx.doi.org/10.1042/BSR20202672 Text en © 2020 The Author(s). https://creativecommons.org/licenses/by/4.0/ This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the .
spellingShingle Biotechnology
Almayouf, Mina A.
El-khadragy, Manal
Awad, Manal A.
Alolayan, Ebtesam M.
The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
title The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
title_full The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
title_fullStr The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
title_full_unstemmed The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
title_short The effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
title_sort effects of silver nanoparticles biosynthesized using fig and olive extracts on cutaneous leishmaniasis-induced inflammation in female balb/c mice
topic Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745064/
https://www.ncbi.nlm.nih.gov/pubmed/33252120
http://dx.doi.org/10.1042/BSR20202672
work_keys_str_mv AT almayoufminaa theeffectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT elkhadragymanal theeffectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT awadmanala theeffectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT alolayanebtesamm theeffectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT almayoufminaa effectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT elkhadragymanal effectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT awadmanala effectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice
AT alolayanebtesamm effectsofsilvernanoparticlesbiosynthesizedusingfigandoliveextractsoncutaneousleishmaniasisinducedinflammationinfemalebalbcmice