Cargando…
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractab...
Autores principales: | Hengl, Tomislav, Leenaars, Johan G. B., Shepherd, Keith D., Walsh, Markus G., Heuvelink, Gerard B. M., Mamo, Tekalign, Tilahun, Helina, Berkhout, Ezra, Cooper, Matthew, Fegraus, Eric, Wheeler, Ichsani, Kwabena, Nketia A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745107/ https://www.ncbi.nlm.nih.gov/pubmed/33456317 http://dx.doi.org/10.1007/s10705-017-9870-x |
Ejemplares similares
-
SoilGrids250m: Global gridded soil information based on machine learning
por: Hengl, Tomislav, et al.
Publicado: (2017) -
Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
por: Hengl, Tomislav, et al.
Publicado: (2015) -
Better soils for healthier lives? An econometric assessment of the link between soil nutrients and malnutrition in Sub-Saharan Africa
por: Berkhout, Ezra D., et al.
Publicado: (2019) -
Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa
por: Leenaars, Johan G.B., et al.
Publicado: (2018) -
African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
por: Hengl, Tomislav, et al.
Publicado: (2021)