Cargando…

Clinical application of free-breathing 3D whole heart late gadolinium enhancement cardiovascular magnetic resonance with high isotropic spatial resolution using Compressed SENSE

BACKGROUND: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) represents the gold standard for assessment of myocardial viability. The purpose of this study was to investigate the clinical potential of Compressed SENSE (factor 5) accelerated free-breathing three-dimensional (...

Descripción completa

Detalles Bibliográficos
Autores principales: Pennig, Lenhard, Lennartz, Simon, Wagner, Anton, Sokolowski, Marcel, Gajzler, Matej, Ney, Svenja, Laukamp, Kai Roman, Persigehl, Thorsten, Bunck, Alexander Christian, Maintz, David, Weiss, Kilian, Naehle, Claas Philip, Doerner, Jonas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745391/
https://www.ncbi.nlm.nih.gov/pubmed/33327958
http://dx.doi.org/10.1186/s12968-020-00673-5
Descripción
Sumario:BACKGROUND: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) represents the gold standard for assessment of myocardial viability. The purpose of this study was to investigate the clinical potential of Compressed SENSE (factor 5) accelerated free-breathing three-dimensional (3D) whole heart LGE with high isotropic spatial resolution (1.4 mm(3) acquired voxel size) compared to standard breath-hold LGE imaging. METHODS: This was a retrospective, single-center study of 70 consecutive patients (45.8 ± 18.1 years, 27 females; February–November 2019), who were referred for assessment of left ventricular myocardial viability and received free-breathing and breath-hold LGE sequences at 1.5 T in clinical routine. Two radiologists independently evaluated global and segmental LGE in terms of localization and transmural extent. Readers scored scans regarding image quality (IQ), artifacts, and diagnostic confidence (DC) using 5-point scales (1 non-diagnostic—5 excellent/none). Effects of heart rate and body mass index (BMI) on IQ, artifacts, and DC were evaluated with ordinal logistic regression analysis. RESULTS: Global LGE (n = 33) was identical for both techniques. Using free-breathing LGE (average scan time: 04:33 ± 01:17 min), readers detected more hyperenhanced lesions (28.2% vs. 23.5%, P < .05) compared to breath-hold LGE (05:15 ± 01:23 min, P = .0104), pronounced at subepicardial localization and for 1–50% of transmural extent. For free-breathing LGE, readers graded scans with good/excellent IQ in 80.0%, with low-impact/no artifacts in 78.6%, and with good/high DC in 82.1% of cases. Elevated BMI was associated with increased artifacts (P = .0012) and decreased IQ (P = .0237). Increased heart rate negatively influenced artifacts (P = .0013) and DC (P = .0479) whereas IQ (P = .3025) was unimpaired. CONCLUSIONS: In a clinical setting, free-breathing Compressed SENSE accelerated 3D high isotropic spatial resolution whole heart LGE provides good to excellent image quality in 80% of scans independent of heart rate while enabling improved depiction of small and particularly non-ischemic hyperenhanced lesions in a shorter scan time than standard breath-hold LGE.