Cargando…

Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures

[Image: see text] Recent studies have revealed that van der Waals (vdW) heteroepitaxial growth of 2D materials on crystalline substrates, such as hexagonal boron nitride (hBN), leads to the formation of self-aligned grains, which results in defect-free stitching between the grains. However, how the...

Descripción completa

Detalles Bibliográficos
Autores principales: Okada, Mitsuhiro, Maruyama, Mina, Okada, Susumu, Warner, Jamie H., Kureishi, Yusuke, Uchiyama, Yosuke, Taniguchi, Takashi, Watanabe, Kenji, Shimizu, Tetsuo, Kubo, Toshitaka, Ishihara, Masatou, Shinohara, Hisanori, Kitaura, Ryo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745401/
https://www.ncbi.nlm.nih.gov/pubmed/33344821
http://dx.doi.org/10.1021/acsomega.0c04168
_version_ 1783624597701132288
author Okada, Mitsuhiro
Maruyama, Mina
Okada, Susumu
Warner, Jamie H.
Kureishi, Yusuke
Uchiyama, Yosuke
Taniguchi, Takashi
Watanabe, Kenji
Shimizu, Tetsuo
Kubo, Toshitaka
Ishihara, Masatou
Shinohara, Hisanori
Kitaura, Ryo
author_facet Okada, Mitsuhiro
Maruyama, Mina
Okada, Susumu
Warner, Jamie H.
Kureishi, Yusuke
Uchiyama, Yosuke
Taniguchi, Takashi
Watanabe, Kenji
Shimizu, Tetsuo
Kubo, Toshitaka
Ishihara, Masatou
Shinohara, Hisanori
Kitaura, Ryo
author_sort Okada, Mitsuhiro
collection PubMed
description [Image: see text] Recent studies have revealed that van der Waals (vdW) heteroepitaxial growth of 2D materials on crystalline substrates, such as hexagonal boron nitride (hBN), leads to the formation of self-aligned grains, which results in defect-free stitching between the grains. However, how the weak vdW interaction causes a strong limitation on the crystal orientation of grains is still not understood yet. In this work, we have focused on investigating the microscopic mechanism of the self-alignment of MoS(2) grains in vdW epitaxial growth on hBN. Using the density functional theory and the Lennard–Jones potential, we found that the interlayer energy between MoS(2) and hBN strongly depends on the size and crystal orientation of MoS(2). We also found that, when the size of MoS(2) is several tens of nanometers, the rotational energy barrier can exceed ∼1 eV, which should suppress rotation to align the crystal orientation of MoS(2) even at the growth temperature.
format Online
Article
Text
id pubmed-7745401
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-77454012020-12-18 Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures Okada, Mitsuhiro Maruyama, Mina Okada, Susumu Warner, Jamie H. Kureishi, Yusuke Uchiyama, Yosuke Taniguchi, Takashi Watanabe, Kenji Shimizu, Tetsuo Kubo, Toshitaka Ishihara, Masatou Shinohara, Hisanori Kitaura, Ryo ACS Omega [Image: see text] Recent studies have revealed that van der Waals (vdW) heteroepitaxial growth of 2D materials on crystalline substrates, such as hexagonal boron nitride (hBN), leads to the formation of self-aligned grains, which results in defect-free stitching between the grains. However, how the weak vdW interaction causes a strong limitation on the crystal orientation of grains is still not understood yet. In this work, we have focused on investigating the microscopic mechanism of the self-alignment of MoS(2) grains in vdW epitaxial growth on hBN. Using the density functional theory and the Lennard–Jones potential, we found that the interlayer energy between MoS(2) and hBN strongly depends on the size and crystal orientation of MoS(2). We also found that, when the size of MoS(2) is several tens of nanometers, the rotational energy barrier can exceed ∼1 eV, which should suppress rotation to align the crystal orientation of MoS(2) even at the growth temperature. American Chemical Society 2020-11-30 /pmc/articles/PMC7745401/ /pubmed/33344821 http://dx.doi.org/10.1021/acsomega.0c04168 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Okada, Mitsuhiro
Maruyama, Mina
Okada, Susumu
Warner, Jamie H.
Kureishi, Yusuke
Uchiyama, Yosuke
Taniguchi, Takashi
Watanabe, Kenji
Shimizu, Tetsuo
Kubo, Toshitaka
Ishihara, Masatou
Shinohara, Hisanori
Kitaura, Ryo
Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures
title Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures
title_full Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures
title_fullStr Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures
title_full_unstemmed Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures
title_short Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS(2)/hBN Vertical Heterostructures
title_sort microscopic mechanism of van der waals heteroepitaxy in the formation of mos(2)/hbn vertical heterostructures
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745401/
https://www.ncbi.nlm.nih.gov/pubmed/33344821
http://dx.doi.org/10.1021/acsomega.0c04168
work_keys_str_mv AT okadamitsuhiro microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT maruyamamina microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT okadasusumu microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT warnerjamieh microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT kureishiyusuke microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT uchiyamayosuke microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT taniguchitakashi microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT watanabekenji microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT shimizutetsuo microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT kubotoshitaka microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT ishiharamasatou microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT shinoharahisanori microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures
AT kitauraryo microscopicmechanismofvanderwaalsheteroepitaxyintheformationofmos2hbnverticalheterostructures