Cargando…
Delimiting cryptic morphological variation among human malaria vector species using convolutional neural networks
Deep learning is a powerful approach for distinguishing classes of images, and there is a growing interest in applying these methods to delimit species, particularly in the identification of mosquito vectors. Visual identification of mosquito species is the foundation of mosquito-borne disease surve...
Autores principales: | Couret, Jannelle, Moreira, Danilo C., Bernier, Davin, Loberti, Aria Mia, Dotson, Ellen M., Alvarez, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745989/ https://www.ncbi.nlm.nih.gov/pubmed/33332415 http://dx.doi.org/10.1371/journal.pntd.0008904 |
Ejemplares similares
-
Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)
por: Couret, Jannelle, et al.
Publicado: (2014) -
Prioritizing Water Security in the Management of Vector‐Borne Diseases: Lessons From Oaxaca, Mexico
por: Akanda, Ali S., et al.
Publicado: (2020) -
A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)
por: Couret, Jannelle, et al.
Publicado: (2014) -
Using a Logic Model to Direct Backward Design of Curriculum
por: Loberti, Aria Mia, et al.
Publicado: (2018) -
Species delimitation and microalgal cryptic diversity analysis
of the genus Micractinium (Chlorophyta)
por: Krivina, E.S., et al.
Publicado: (2022)