Cargando…
Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity
Determination of pile bearing capacity is essential in pile foundation design. This study focused on the use of evolutionary algorithms to optimize Deep Learning Neural Network (DLNN) algorithm to predict the bearing capacity of driven pile. For this purpose, a Genetic Algorithm (GA) was developed t...
Autores principales: | Pham, Tuan Anh, Tran, Van Quan, Vu, Huong-Lan Thi, Ly, Hai-Bang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746167/ https://www.ncbi.nlm.nih.gov/pubmed/33332377 http://dx.doi.org/10.1371/journal.pone.0243030 |
Ejemplares similares
-
Developing random forest hybridization models for estimating the axial bearing capacity of pile
por: Pham, Tuan Anh, et al.
Publicado: (2022) -
A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns
por: Nguyen, Quang Hung, et al.
Publicado: (2020) -
Analysis of the Bearing Capacity of Helical Pile with Hexagonal Joints
por: Kim, Daehyeon, et al.
Publicado: (2018) -
Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS
por: Tran, Van Quan, et al.
Publicado: (2021) -
Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression
por: Nguyen, Hung Quang, et al.
Publicado: (2020)