Cargando…

Indole-3-acetic acid synthesized through the indole-3-pyruvate pathway promotes Candida tropicalis biofilm formation

We previously found that the elevated abundance of the fungus Candida tropicalis is positively correlated with the bacteria Escherichia coli and Serratia marcescens in Crohn’s disease patients and the three pathogens, when co-cultured, form a robust mixed-species biofilm. The finding suggests that t...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyagi, Masaru, Wilson, Rachel, Saigusa, Daisuke, Umeda, Keiko, Saijo, Reina, Hager, Christopher L., Li, Yuejin, McCormick, Thomas, Ghannoum, Mahmoud A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746184/
https://www.ncbi.nlm.nih.gov/pubmed/33332404
http://dx.doi.org/10.1371/journal.pone.0244246
Descripción
Sumario:We previously found that the elevated abundance of the fungus Candida tropicalis is positively correlated with the bacteria Escherichia coli and Serratia marcescens in Crohn’s disease patients and the three pathogens, when co-cultured, form a robust mixed-species biofilm. The finding suggests that these three pathogens communicate and promote biofilm formation, possibly through secretion of small signaling molecules. To identify candidate signaling molecules, we carried out a metabolomic analysis of the single-species and triple-species cultures of the three pathogens. This analysis identified 15 metabolites that were highly increased in the triple-species culture. One highly induced metabolite was indole-3-acetic acid (IAA), which has been shown to induce filamentation of certain fungi. We thus tested the effect of IAA on biofilm formation of C. tropicalis and demonstrated that IAA promotes biofilm formation of C. tropicalis. Then, we carried out isotope tracing experiments using (13)C-labeled-tryptophan as a precursor to uncover the biosynthesis pathway of IAA in C. tropicalis. The results indicated that C. tropicalis synthesizes IAA through the indole-3-pyruvate pathway. Further studies using inhibitors of the indole-3-pyruvate pathway are warranted to decipher the mechanisms by which IAA influences biofilm formation.