Cargando…
Demonstration of the potential of white-box machine learning approaches to gain insights from cardiovascular disease electrocardiograms
We present the results from a white-box machine learning approach to detect cardiac arrhythmias using electrocardiographic data. A C5.0 is trained to recognize four classes using common features. The four classes are (i) atrial fibrillation and atrial flutter, (ii) tachycardias (iii), sinus bradycar...
Autores principales: | Rieg, Thilo, Frick, Janek, Baumgartl, Hermann, Buettner, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746264/ https://www.ncbi.nlm.nih.gov/pubmed/33332440 http://dx.doi.org/10.1371/journal.pone.0243615 |
Ejemplares similares
-
Electrocardiogram machine learning for detection of cardiovascular disease in African Americans: the Jackson Heart Study
por: Pollard, James D, et al.
Publicado: (2021) -
Machine Learning Electrocardiogram for Mobile Cardiac Pattern Extraction
por: Zhang, Qingxue, et al.
Publicado: (2023) -
Interpreting a black box predictor to gain insights into early folding mechanisms
por: Grau, Isel, et al.
Publicado: (2021) -
Exploration of Black Boxes of Supervised Machine Learning Models: A Demonstration on Development of Predictive Heart Risk Score
por: Sajid, Mirza Rizwan, et al.
Publicado: (2022) -
Machine learning of big data in gaining insight into successful treatment of hypertension
por: Koren, Gideon, et al.
Publicado: (2018)