Cargando…

Plant–atmosphere and soil–atmosphere temperature differences and their impact on grain yield of super hybrid rice under different irrigation conditions

Continued drought during the late growth stage of super hybrid rice (SHR) markedly reduces yield, and management practices that use water more efficiently can contribute greatly to high and stable yields from SHR. The absolute temperature differences (ATDs) between the rice plant and the atmosphere...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Guiyuan, Zheng, Rongqian, Chen, Haiping, Ma, Guohui, Wei, Zhongwei, Xiang, Guohong, Zhou, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746292/
https://www.ncbi.nlm.nih.gov/pubmed/33332448
http://dx.doi.org/10.1371/journal.pone.0243580
Descripción
Sumario:Continued drought during the late growth stage of super hybrid rice (SHR) markedly reduces yield, and management practices that use water more efficiently can contribute greatly to high and stable yields from SHR. The absolute temperature differences (ATDs) between the rice plant and the atmosphere and between the soil and the atmosphere are believed to be important determinants of grain yield. However, it has not previously been determined whether these ATDs have any effect on SHR yields under water-saving cultivation. A two-year field experiment involving two SHR varieties, Liangyoupeijiu (LYPJ) and Y-Liangyou 9000 (YLY900), evaluated the effects of reducing water supply from mid-booting to maturity on grain yield, canopy relative humidity (CRH), leaf area index (LAI), and ATDs between the ambient temperature and the leaf surface, panicles, canopy, and soil. Grain yield increased significantly under shallow water irrigation (SW), by 8.84% (YLY900) and 12.26% (LYPJ), but decreased significantly under mild water stress (MS, −20 to −30 kPa), by 14.36% (YLY900) and 9.47% (LYPJ), as well as severe water stress (SS, −40 to −50 kPa), by 35.06% (YLY900) and 28.74% (LYPJ). As water supply decreased, so did the CRH and the ATDs, with significant decreases under MS and SS. The temperature differences were significantly and positively correlated with grain yield (P < 0.01) in both cultivars. LAI was increased under SW conditions, but was significantly decreased under MS and SS. Our study suggests that the dual goal of saving water while maintaining high yield can be achieved by applying SW irrigation from mid-booting to maturity and by adopting cultivation measures that maintain high CRH and high plant–atmosphere and soil–atmosphere ATDs in order to alleviate water stress. YLY900 has a higher yield potential than LYPJ under SW conditions, suggesting that its wide cultivation may help achieve this dual goal.