Cargando…
An improved approach for fault detection by simultaneous overcoming of high-dimensionality, autocorrelation, and time-variability
The control charts with the Principal Component Analysis (PCA) approach and its extension are among the data-driven methods for process monitoring and the detection of faults. Industrial processing data involves complexities such as high dimensionality, auto-correlation, and non-stationary which may...
Autores principales: | Hajarian, Nastaran, Movahedi Sobhani, Farzad, Sadjadi, Seyed Jafar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746307/ https://www.ncbi.nlm.nih.gov/pubmed/33332390 http://dx.doi.org/10.1371/journal.pone.0243146 |
Ejemplares similares
-
Linguistic Z-number weighted averaging operators and their application to portfolio selection problem
por: Mahmoodi, Amir Hosein, et al.
Publicado: (2020) -
Partial Autocorrelation Diagnostics for Count Time Series
por: Weiß, Christian H., et al.
Publicado: (2023) -
Autocorrelation in category judgement
por: Laming, Donald
Publicado: (2023) -
Constrained portfolio optimization with discrete variables: An algorithmic method based on dynamic programming
por: Jezeie, Fereshteh Vaezi, et al.
Publicado: (2022) -
Automatic detection of the autocorrelation-type measurement error component
por: Hangos, K. M., et al.
Publicado: (1986)