Cargando…
Gonadal white adipose tissue-derived exosomal MiR-222 promotes obesity-associated insulin resistance
In this study, we investigated the role of serum exosomal miR-222 in obesity-related insulin resistance. Bioinformatics analyses showed that miR-222 levels were significantly upregulated in the white adipose tissue of obese patients with insulin resistance (GSE25402 dataset) and in serum samples fro...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746358/ https://www.ncbi.nlm.nih.gov/pubmed/33197889 http://dx.doi.org/10.18632/aging.103891 |
Sumario: | In this study, we investigated the role of serum exosomal miR-222 in obesity-related insulin resistance. Bioinformatics analyses showed that miR-222 levels were significantly upregulated in the white adipose tissue of obese patients with insulin resistance (GSE25402 dataset) and in serum samples from type 2 diabetes mellitus (T2DM) patients (GSE90028 dataset). Moreover, analysis of miRNA expression in adipose tissue-specific Dicer knockout mice (GitHub dataset) and diabetic model mice (GSE81976 and GSE85101 datasets), gonadal white adipose tissue (gWAT) was the main source of serum exosomal miR-222. MiR-222 levels were significantly elevated in the serum, serum exosomes and gWAT of mice fed a high-fat diet (HFD), and there was a corresponding downregulation of IRS1 and phospho-AKT levels in their liver and skeletal muscle tissues, which correlated with impaired insulin sensitivity and glucose intolerance. These effects were abrogated by surgically removing the gWAT from the HFD-fed mice. Thus, gWAT-derived serum exosomal miR-222 appears to promote insulin resistance in the liver and skeletal muscle of HFD-fed obese mice by suppressing IRS1 expression. |
---|