Cargando…

Cognitive reserve and network efficiency as compensatory mechanisms of the effect of aging on phonemic fluency

Compensation in cognitive aging is a topic of recent interest. However, factors contributing to cognitive compensation in functions such as phonemic fluency (PF) are not completely understood. Using cross-sectional data, we investigated cognitive reserve (CR) and network efficiency in young (32-58 y...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez-Burgos, Lissett, Barroso, José, Ferreira, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746387/
https://www.ncbi.nlm.nih.gov/pubmed/33203801
http://dx.doi.org/10.18632/aging.202177
Descripción
Sumario:Compensation in cognitive aging is a topic of recent interest. However, factors contributing to cognitive compensation in functions such as phonemic fluency (PF) are not completely understood. Using cross-sectional data, we investigated cognitive reserve (CR) and network efficiency in young (32-58 years) versus old (59-84 years) individuals with high versus low performance in PF. ANCOVA was used to investigate the interaction between CR, age, and performance in PF. Random forest and graph theory analyses were conducted to study the contribution of cognition to PF and efficiency measures, respectively. Higher CR increased performance in PF and reduced age-related differences in PF. A slightly higher number of cognitive functions contributed to performance in high CR groups. The networks were more integrated in high CR individuals, both in the older age and high-performance groups. The strength and segregation of the networks were decreased in high-performance groups with high CR. We conclude that PF decreases less with age in individuals with higher CR, possibly due to a greater capacity to recruit non-linguistic cognitive networks, and efficient use of language networks, thereby integrating information in a rapid way across less fragmented networks. High CR and network efficiency seem to be important factors for cognitive compensation.