Cargando…

Time-resolved RIXS experiment with pulse-by-pulse parallel readout data collection using X-ray free electron laser

Time-resolved resonant inelastic X-ray scattering (RIXS) is one of the developing techniques enabled by the advent of X-ray free electron laser (FEL). It is important to evaluate how the FEL jitter, which is inherent in the self-amplified spontaneous emission process, influences the RIXS measurement...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, H., Gauthier, A., Hepting, M., Tremsin, A. S., Reid, A. H., Kirchmann, P. S., Shen, Z. X., Devereaux, T. P., Shao, Y. C., Feng, X., Coslovich, G., Hussain, Z., Dakovski, G. L., Chuang, Y. D., Lee, W. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746750/
https://www.ncbi.nlm.nih.gov/pubmed/33335197
http://dx.doi.org/10.1038/s41598-020-79210-4
Descripción
Sumario:Time-resolved resonant inelastic X-ray scattering (RIXS) is one of the developing techniques enabled by the advent of X-ray free electron laser (FEL). It is important to evaluate how the FEL jitter, which is inherent in the self-amplified spontaneous emission process, influences the RIXS measurement. Here, we use a microchannel plate (MCP) based Timepix soft X-ray detector to conduct a time-resolved RIXS measurement at the Ti L(3)-edge on a charge-density-wave material TiSe(2). The fast parallel Timepix readout and single photon sensitivity enable pulse-by-pulse data acquisition and analysis. Due to the FEL jitter, low detection efficiency of spectrometer, and low quantum yield of RIXS process, we find that less than 2% of the X-ray FEL pulses produce signals, preventing acquiring sufficient data statistics while maintaining temporal and energy resolution in this measurement. These limitations can be mitigated by using future X-ray FELs with high repetition rates, approaching MHz such as the European XFEL in Germany and LCLS-II in the USA, as well as by utilizing advanced detectors, such as the prototype used in this study.