Cargando…

Bacterial co-infections and antibiotic resistance in patients with COVID-19

Background: Bacterial co-infections are frequently identified in viral respiratory infections and are significant reasons for morbidity and mortality. Information on the prevalence of bacterial co-infection in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is lac...

Descripción completa

Detalles Bibliográficos
Autor principal: Mahmoudi, Hassan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: German Medical Science GMS Publishing House 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747008/
https://www.ncbi.nlm.nih.gov/pubmed/33391970
http://dx.doi.org/10.3205/dgkh000370
Descripción
Sumario:Background: Bacterial co-infections are frequently identified in viral respiratory infections and are significant reasons for morbidity and mortality. Information on the prevalence of bacterial co-infection in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is lacking. The purpose of this study was to determine the prevalence of bacterial infections and antibiotic resistance in patients with coronavirus disease (COVID-19). Methods: In a cross-sectional study, blood culture (BC) and endotracheal aspirate (ETA) were obtained from COVID-19 patients (RT-PCR positive for SARS-CoV-2). The bacterial isolates were confirmed by the standard microbiological methods. Antibiotic resistance was determined using the disk diffusion method. Results: Among these 340 patients with COVID-19, a total of 43 (12.46%) patients had secondary bacterial infections. The most common bacteria isolated through ETA and BC included Klebsiella species 11 (25.59%), methicillin-sensitive Staphylococcus aureus (MSSA) 9 (20.93%), Escherichia coli 7 (16.28%), methicillin-resistant Staphylococcus aureus (MRSA) 6 (13.95%), Enterobacter species 5 (11.63%), Streptococcus pneumoniae 1 (2.32%), and Pseudomonas aeruginosa 4 (9.30%). The results showed that Enterobacteriaceae isolates from COVID-19 patients had the highest resistance to cotrimoxazole (74%), piperacillin (67.5%), ceftazidime (47.5%), and cefepime (42.5%). All isolates were susceptible to amikacin (100%). S. aureus isolates were susceptible to vancomycin (100%) and the rates of resistance to oxacillin, erythromycin and clindamycin were over (90%). P. aeruginosa was susceptible (90%) to imipenem. Conclusions: Bacterial co-infection is relatively infrequent in hospitalized COVID-19 patients. According to the results, one of the causes of death of these patients could be a secondary infections.