Cargando…
Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant–Positive Non–Small Cell Lung Cancer
IMPORTANCE: An end-to-end efficacy evaluation approach for identifying progression risk after epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor (TKI) therapy in patients with stage IV EGFR variant–positive non–small cell lung cancer (NSCLC) is lacking. OBJECTIVE: To propose a clinica...
Autores principales: | Song, Jiangdian, Wang, Lu, Ng, Nathan Norton, Zhao, Mingfang, Shi, Jingyun, Wu, Ning, Li, Weimin, Liu, Zaiyi, Yeom, Kristen W., Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747022/ https://www.ncbi.nlm.nih.gov/pubmed/33331920 http://dx.doi.org/10.1001/jamanetworkopen.2020.30442 |
Ejemplares similares
-
A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune checkpoint inhibitors in stage IV non-small cell lung cancer patients: A multicenter, prognostic study
por: Deng, Kexue, et al.
Publicado: (2022) -
Mechanisms of resistance to EGFR tyrosine kinase inhibitors
por: Huang, Lihua, et al.
Publicado: (2015) -
Characterization of acquired receptor tyrosine–kinase fusions as mechanisms of resistance to EGFR tyrosine–kinase inhibitors
por: Xu, Haiyuan, et al.
Publicado: (2019) -
Imaging of EGFR and EGFR Tyrosine Kinase Overexpression in Tumors by Nuclear Medicine Modalities
por: Mishani, Eyal, et al.
Publicado: (2008) -
Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma
por: Makhlin, Igor, et al.
Publicado: (2019)