Cargando…
Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation
Extensive monitoring in intensive care units (ICUs) generates large quantities of data which contain numerous trends that are difficult for clinicians to systematically evaluate. Current approaches to such heterogeneity in electronic health records (EHRs) discard pertinent information. We present a...
Autores principales: | Deasy, Jacob, Liò, Pietro, Ercole, Ari |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747558/ https://www.ncbi.nlm.nih.gov/pubmed/33335183 http://dx.doi.org/10.1038/s41598-020-79142-z |
Ejemplares similares
-
Data-driven approaches to reveal the pathobiological heterogeneity in patients with traumatic brain injury
por: Åkerlund, Cecilia, et al.
Publicado: (2023) -
Guidelines for Data Acquisition, Quality and Curation for Observational Research Designs (DAQCORD)
por: Ercole, Ari, et al.
Publicado: (2020) -
Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach
por: Desautels, Thomas, et al.
Publicado: (2017) -
Are Unselected Risk Scores in the Cardiac Intensive Care Unit Needed?
por: Miller, P. Elliott, et al.
Publicado: (2021) -
Data-driven curation process for describing the blood glucose management in the intensive care unit
por: Robles Arévalo, Aldo, et al.
Publicado: (2021)