Cargando…
CREAM, a component level coffeemaker electrical activity measurement dataset
Monitoring the internal conditions of a machine is essential to increase its production efficiency and to reduce energy waste. Non-intrusive condition monitoring techniques, such as analysing electrical signals, provide insights by disaggregating a composite signal of a machine as a whole into the i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747629/ https://www.ncbi.nlm.nih.gov/pubmed/33335093 http://dx.doi.org/10.1038/s41597-020-00767-w |
Sumario: | Monitoring the internal conditions of a machine is essential to increase its production efficiency and to reduce energy waste. Non-intrusive condition monitoring techniques, such as analysing electrical signals, provide insights by disaggregating a composite signal of a machine as a whole into the individual components to determine their states. Developing and evaluating new algorithms for condition monitoring and maintenance-related analysis tasks require a fully-labelled dataset for a machine, which comprises standard industrial components that are triggered following a typical manufacturing process to produce goods. For this purpose, we introduce CREAM, a component level electrical measurement dataset for two industrial-grade coffeemakers, simulating industrial processes. The dataset contains continuous voltage and current measurements provided at 6400 samples per second, as well as the product and maintenance-related event labels, such as 370600 expert-labelled component-level electrical events, 1734 product ones and 3646 maintenance ones. CREAM provides fully-labelled ground-truth to establish a benchmark and comparative studies of manufacturing-related analysis in a controlled and transparent environment. |
---|