Cargando…
LogSum + L(2) penalized logistic regression model for biomarker selection and cancer classification
Biomarker selection and cancer classification play an important role in knowledge discovery using genomic data. Successful identification of gene biomarkers and biological pathways can significantly improve the accuracy of diagnosis and help machine learning models have better performance on classif...
Autores principales: | Liu, Xiao-Ying, Wu, Sheng-Bing, Zeng, Wen-Quan, Yuan, Zhan-Jiang, Xu, Hong-Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747646/ https://www.ncbi.nlm.nih.gov/pubmed/33335163 http://dx.doi.org/10.1038/s41598-020-79028-0 |
Ejemplares similares
-
Cancer classification and biomarker selection via a penalized logsum network-based logistic regression model
por: Zhou, Zhiming, et al.
Publicado: (2021) -
Logsum Using Garbled Circuits
por: Portêlo, José, et al.
Publicado: (2015) -
Log-linear models and logistic regression
por: Christensen, Ronald, 1951-
Publicado: (1997) -
Log-linear models and logistic regression
por: Christensen, Ronald
Publicado: (1997) -
Gene and pathway identification with L(p )penalized Bayesian logistic regression
por: Liu, Zhenqiu, et al.
Publicado: (2008)