Cargando…

Dual-view oblique plane microscopy (dOPM)

We present a new folded dual-view oblique plane microscopy (OPM) technique termed dOPM that enables two orthogonal views of the sample to be obtained by translating a pair of tilted mirrors in refocussing space. Using a water immersion 40× 1.15 NA primary objective, deconvolved image volumes of 200...

Descripción completa

Detalles Bibliográficos
Autores principales: Sparks, Hugh, Dent, Lucas, Bakal, Chris, Behrens, Axel, Salbreux, Guillaume, Dunsby, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7747899/
https://www.ncbi.nlm.nih.gov/pubmed/33408991
http://dx.doi.org/10.1364/BOE.409781
Descripción
Sumario:We present a new folded dual-view oblique plane microscopy (OPM) technique termed dOPM that enables two orthogonal views of the sample to be obtained by translating a pair of tilted mirrors in refocussing space. Using a water immersion 40× 1.15 NA primary objective, deconvolved image volumes of 200 nm beads were measured to have full width at half maxima (FWHM) of 0.35 ± 0.04 µm and 0.39 ± 0.02 µm laterally and 0.81 ± 0.07 µm axially. The measured z-sectioning value was 1.33 ± 0.45 µm using light-sheet FWHM in the frames of the two views of 4.99 ± 0.58 µm and 4.89 ± 0.63 µm. To qualitatively demonstrate that the system can reduce shadow artefacts while providing a more isotropic resolution, a multi-cellular spheroid approximately 100 µm in diameter was imaged.