Cargando…

Nucleoporin 160 Regulates Flowering through Anchoring HOS1 for Destabilizing CO in Arabidopsis

Nuclear pore complexes (NPCs), which comprise multiple copies of nucleoporins (Nups), are large protein assemblies embedded in the nuclear envelope connecting the nucleus and cytoplasm. Although it has been known that Nups affect flowering in Arabidopsis, the underlying mechanisms are poorly underst...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chunying, Liu, Lu, Teo, Zhi Wei Norman, Shen, Lisha, Yu, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748013/
https://www.ncbi.nlm.nih.gov/pubmed/33367234
http://dx.doi.org/10.1016/j.xplc.2020.100033
Descripción
Sumario:Nuclear pore complexes (NPCs), which comprise multiple copies of nucleoporins (Nups), are large protein assemblies embedded in the nuclear envelope connecting the nucleus and cytoplasm. Although it has been known that Nups affect flowering in Arabidopsis, the underlying mechanisms are poorly understood. Here, we show that loss of function of Nucleoporin 160 (Nup160) leads to increased abundance of CONSTANS (CO) protein and the resulting upregulation of FLOWERING LOCUS T (FT) specifically in the morning. We demonstrate that Nup160 regulates CO protein stability through affecting NPC localization of an E3-ubiquitin ligase, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1), which destabilizes CO protein in the morning period. Taken together, these results provide a mechanistic understanding of Nup function in the transition from vegetative to reproductive growth, suggesting that deposition of HOS1 at NPCs by Nup160 is essential for preventing precocious flowering in response to photoperiod in Arabidopsis.