Cargando…
SIZ1-Mediated SUMO Modification of SEUSS Regulates Photomorphogenesis in Arabidopsis
Small ubiquitin-like modifier (SUMO) post-translational modification (SUMOylation) plays essential roles in regulating various biological processes; however, its function and regulation in the plant light signaling pathway are largely unknown. SEUSS (SEU) is a transcriptional co-regulator that integ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748021/ https://www.ncbi.nlm.nih.gov/pubmed/33367258 http://dx.doi.org/10.1016/j.xplc.2020.100080 |
Sumario: | Small ubiquitin-like modifier (SUMO) post-translational modification (SUMOylation) plays essential roles in regulating various biological processes; however, its function and regulation in the plant light signaling pathway are largely unknown. SEUSS (SEU) is a transcriptional co-regulator that integrates light and temperature signaling pathways, thereby regulating plant growth and development in Arabidopsis thaliana. Here, we show that SEU is a substrate of SUMO1, and that substitution of four conserved lysine residues disrupts the SUMOylation of SEU, impairs its function in photo- and thermomorphogenesis, and enhances its interaction with PHYTOCHROME-INTERACTING FACTOR 4 transcription factors. Furthermore, the SUMO E3 ligase SIZ1 interacts with SEU and regulates its SUMOylation. Moreover, SEU directly interacts with phytochrome B photoreceptors, and the SUMOylation and stability of SEU are activated by light. Our study reveals a novel post-translational modification mechanism of SEU in which light regulates plant growth and development through SUMOylation-mediated protein stability. |
---|