Cargando…
Complete mitochondrail genome of Corydoras agassizii
We reported the complete mitochondrial genome yielded using next-generation sequencing of Corydoras agassizii in this study. The total length of the mitochondrial genome is 16,562 bp, with the base composition of 32.6% A, 25.9% T, 26.8% C, and 14.7% G, in several. It contains two rRNA genes, 22 tRNA...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748502/ https://www.ncbi.nlm.nih.gov/pubmed/33366722 http://dx.doi.org/10.1080/23802359.2020.1715277 |
Sumario: | We reported the complete mitochondrial genome yielded using next-generation sequencing of Corydoras agassizii in this study. The total length of the mitochondrial genome is 16,562 bp, with the base composition of 32.6% A, 25.9% T, 26.8% C, and 14.7% G, in several. It contains two rRNA genes, 22 tRNA genes, 13 protein-coding genes, and a 945 bp non-coding control region (D-loop region). The sequence of these genes is consistent with that found in the Siluriformes. The complete mitogenomes of C. agassizii and other 17 species of fish were constructed by phylogenetic analysis using Neighbour-Joining method. The topological structure indicated that species participating in the analysis belong to three groups (Siluridae, Loricariidae, and Callichthyidae) of nine genera, and the C. agassizii was clustered with other species from genus Corydoras. The external morphological characteristics of C. agassizii are consistent with the results of molecular classification, so the mitogenome can be used to identify Corydoras species in the future. |
---|