Cargando…

Topological Analysis of the Language Networks of Ancient Traditional Chinese Medicine Books

This study aims to explore the topological regularities of the character network of ancient traditional Chinese medicine (TCM) book. We applied the 2-gram model to construct language networks from ancient TCM books. Each text of the book was separated into sentences and a TCM book was generated as a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Qunsheng, Wang, Yinyan, Shu, Zixin, Yang, Kuo, Wang, Jingjing, Lu, Kezhi, Zhu, Qiang, Liu, Baoyan, Zhang, Runshun, Zhou, Xuezhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748907/
https://www.ncbi.nlm.nih.gov/pubmed/33381207
http://dx.doi.org/10.1155/2020/8810016
Descripción
Sumario:This study aims to explore the topological regularities of the character network of ancient traditional Chinese medicine (TCM) book. We applied the 2-gram model to construct language networks from ancient TCM books. Each text of the book was separated into sentences and a TCM book was generated as a directed network, in which nodes represent Chinese characters and links represent the sequential associations between Chinese characters in the sentences (the occurrence of identical sequential associations is considered as the weight of this link). We first calculated node degrees, average path lengths, and clustering coefficients of the book networks and explored the basic topological correlations between them. Then, we compared the similarity of network nodes to assess the specificity of TCM concepts in the network. In order to explore the relationship between TCM concepts, we screened TCM concepts and clustered them. Finally, we selected the binary groups whose weights are greater than 10 in Inner Canon of Huangdi (ICH, 黄帝内经) and Treatise on Cold Pathogenic Disease (TCPD, 伤寒论), hoping to find the core differences of these two ancient TCM books through them. We found that the degree distributions of ancient TCM book networks are consistent with power law distribution. Moreover, the average path lengths of book networks are much smaller than random networks of the same scale; clustering coefficients are higher, which means that ancient book networks have small-world patterns. In addition, the similar TCM concepts are displayed and linked closely, according to the results of cosine similarity comparison and clustering. Furthermore, the core words of Inner Canon of Huangdi and Treatise on Cold Pathogenic Diseases have essential differences, which might indicate the significant differences of language and conceptual patterns between theoretical and clinical books. This study adopts language network approach to investigate the basic conceptual characteristics of ancient TCM book networks, which proposes a useful method to identify the underlying conceptual meanings of particular concepts conceived in TCM theories and clinical operations.