Cargando…
Application of feed forward and recurrent neural networks in simulation of left ventricular mechanics
An understanding of left ventricle (LV) mechanics is fundamental for designing better preventive, diagnostic, and treatment strategies for improved heart function. Because of the costs of clinical and experimental studies to treat and understand heart function, respectively, in-silico models play an...
Autores principales: | Dabiri, Yaghoub, Van der Velden, Alex, Sack, Kevin L., Choy, Jenny S., Guccione, Julius M., Kassab, Ghassan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749109/ https://www.ncbi.nlm.nih.gov/pubmed/33339836 http://dx.doi.org/10.1038/s41598-020-79191-4 |
Ejemplares similares
-
Prediction of Left Ventricular Mechanics Using Machine Learning
por: Dabiri, Yaghoub, et al.
Publicado: (2019) -
Machine learning used for simulation of MitraClip intervention: A proof-of-concept study
por: Dabiri, Yaghoub, et al.
Publicado: (2023) -
Numerical Simulations of MitraClip Placement: Clinical Implications
por: Kamakoti, Ramji, et al.
Publicado: (2019) -
Relationship of Transmural Variations in Myofiber Contractility to Left Ventricular Ejection Fraction: Implications for Modeling Heart Failure Phenotype With Preserved Ejection Fraction
por: Dabiri, Yaghoub, et al.
Publicado: (2018) -
Inversion of Left Atrial Appendage Will Cause Compressive Stresses in the Tissue: Simulation Study of Potential Therapy
por: Pasta, Salvatore, et al.
Publicado: (2022)