Cargando…
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
A nanofluid containing water and nanoparticles made of copper (Cu) inside a cavity with square shape is simulated utilizing the computational fluid dynamics (CFD) approach. The nanoparticles made up 15% of the nanofluid. By performing the simulation, the CFD output is characterized by the coordinate...
Autores principales: | Babanezhad, Meisam, Nakhjiri, Ali Taghvaie, Marjani, Azam, Rezakazemi, Mashallah, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749144/ https://www.ncbi.nlm.nih.gov/pubmed/33339873 http://dx.doi.org/10.1038/s41598-020-79293-z |
Ejemplares similares
-
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
por: Pelalak, Rasool, et al.
Publicado: (2021) -
Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS)
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Changes in the Number of Membership Functions for
Predicting the Gas Volume Fraction in Two-Phase Flow Using Grid Partition
Clustering of the ANFIS Method
por: Babanezhad, Meisam, et al.
Publicado: (2020)