Cargando…
Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks
The reconstruction of Gene Regulatory Networks (GRNs) from gene expression data, supported by machine learning approaches, has received increasing attention in recent years. The task at hand is to identify regulatory links between genes in a network. However, existing methods often suffer when the n...
Autores principales: | Mignone, Paolo, Pio, Gianvito, Džeroski, Sašo, Ceci, Michelangelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749184/ https://www.ncbi.nlm.nih.gov/pubmed/33339842 http://dx.doi.org/10.1038/s41598-020-78033-7 |
Ejemplares similares
-
Semi-Supervised Multi-View Learning for Gene Network Reconstruction
por: Ceci, Michelangelo, et al.
Publicado: (2015) -
Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction
por: Stojanova, Daniela, et al.
Publicado: (2013) -
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach
por: Pio, Gianvito, et al.
Publicado: (2014) -
ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks
por: Pio, Gianvito, et al.
Publicado: (2015) -
Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, proceedings, part I
por: Ceci, Michelangelo, et al.
Publicado: (2017)