Cargando…
DReLAB - Deep REinforcement Learning Adversarial Botnet: A benchmark dataset for adversarial attacks against botnet Intrusion Detection Systems
We present the first dataset that aims to serve as a benchmark to validate the resilience of botnet detectors against adversarial attacks. This dataset includes realistic adversarial samples that are generated by leveraging two widely used Deep Reinforcement Learning (DRL) techniques. These adversar...
Autores principales: | Venturi, Andrea, Apruzzese, Giovanni, Andreolini, Mauro, Colajanni, Michele, Marchetti, Mirco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749366/ https://www.ncbi.nlm.nih.gov/pubmed/33365367 http://dx.doi.org/10.1016/j.dib.2020.106631 |
Ejemplares similares
-
Botnet dataset with simultaneous attack activity
por: Putra, Muhammad Aidiel Rachman, et al.
Publicado: (2022) -
Virtual honeypots: from botnet tracking to intrusion detection
por: Provos, Niels, et al.
Publicado: (2007) -
Botnet Attack Detection in IoT Using Machine Learning
por: Alissa, Khalid, et al.
Publicado: (2022) -
Using honeypots to model botnet attacks on the internet of medical things()
por: Wang, Huanran, et al.
Publicado: (2022) -
Botnets: The Killer Web App
por: Schiller, Craig A
Publicado: (2007)