Cargando…

Identifying functionally relevant candidate genes for inflexible ethanol intake in mice and humans using a guilt‐by‐association approach

Gene prioritization approaches are useful tools to explore and select candidate genes in transcriptome studies. Knowing the importance of processes such as neuronal activity, intracellular signal transduction, and synapse plasticity to the development and maintenance of compulsive ethanol drinking,...

Descripción completa

Detalles Bibliográficos
Autores principales: Martins de Carvalho, Luana, A. S. Fonseca, Pablo, M. Paiva, Isadora, Damasceno, Samara, S. B. Pedersen, Agatha, da Silva e Silva, Daniel, E. Wiers, Corinde, D. Volkow, Nora, Brunialti Godard, Ana L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749619/
https://www.ncbi.nlm.nih.gov/pubmed/33094916
http://dx.doi.org/10.1002/brb3.1879
Descripción
Sumario:Gene prioritization approaches are useful tools to explore and select candidate genes in transcriptome studies. Knowing the importance of processes such as neuronal activity, intracellular signal transduction, and synapse plasticity to the development and maintenance of compulsive ethanol drinking, the aim of the present study was to explore and identify functional candidate genes associated with these processes in an animal model of inflexible pattern of ethanol intake. To do this, we applied a guilt‐by‐association approach, using the GUILDify and ToppGene software, in our previously published microarray data from the prefrontal cortex (PFC) and striatum of inflexible drinker mice. We then tested some of the prioritized genes that showed a tissue‐specific pattern in postmortem brain tissue (PFC and nucleus accumbens (NAc)) from humans with alcohol use disorder (AUD). In the mouse brain, we prioritized 44 genes in PFC and 26 in striatum, which showed opposite regulation patterns in PFC and striatum. The most prioritized of them (i.e., Plcb1 and Prkcb in PFC, and Dnm2 and Lrrk2 in striatum) were associated with synaptic neuroplasticity, a neuroadaptation associated with excessive ethanol drinking. The identification of transcription factors among the prioritized genes suggests a crucial role for Irf4 in the pattern of regulation observed between PFC and striatum. Lastly, the differential transcription of IRF4 and LRRK2 in PFC and nucleus accumbens in postmortem brains from AUD compared to control highlights their involvement in compulsive ethanol drinking in humans and mice.