Cargando…
Mutations in domain IV of elongation factor EF-G confer −1 frameshifting
A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon–anticodon pairing and slippage of the reading frame by −1, directly implicating EF-G in preservation of the translational reading frame. Among mutatio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749637/ https://www.ncbi.nlm.nih.gov/pubmed/33008838 http://dx.doi.org/10.1261/rna.077339.120 |
_version_ | 1783625345319043072 |
---|---|
author | Niblett, Dustin Nelson, Charlotte Leung, Calvin S. Rexroad, Gillian Cozy, Jake Zhou, Jie Lancaster, Laura Noller, Harry F. |
author_facet | Niblett, Dustin Nelson, Charlotte Leung, Calvin S. Rexroad, Gillian Cozy, Jake Zhou, Jie Lancaster, Laura Noller, Harry F. |
author_sort | Niblett, Dustin |
collection | PubMed |
description | A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon–anticodon pairing and slippage of the reading frame by −1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon–anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased −1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon. |
format | Online Article Text |
id | pubmed-7749637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-77496372022-01-01 Mutations in domain IV of elongation factor EF-G confer −1 frameshifting Niblett, Dustin Nelson, Charlotte Leung, Calvin S. Rexroad, Gillian Cozy, Jake Zhou, Jie Lancaster, Laura Noller, Harry F. RNA Article A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon–anticodon pairing and slippage of the reading frame by −1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon–anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased −1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon. Cold Spring Harbor Laboratory Press 2021-01 /pmc/articles/PMC7749637/ /pubmed/33008838 http://dx.doi.org/10.1261/rna.077339.120 Text en © 2021 Niblett et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Article Niblett, Dustin Nelson, Charlotte Leung, Calvin S. Rexroad, Gillian Cozy, Jake Zhou, Jie Lancaster, Laura Noller, Harry F. Mutations in domain IV of elongation factor EF-G confer −1 frameshifting |
title | Mutations in domain IV of elongation factor EF-G confer −1 frameshifting |
title_full | Mutations in domain IV of elongation factor EF-G confer −1 frameshifting |
title_fullStr | Mutations in domain IV of elongation factor EF-G confer −1 frameshifting |
title_full_unstemmed | Mutations in domain IV of elongation factor EF-G confer −1 frameshifting |
title_short | Mutations in domain IV of elongation factor EF-G confer −1 frameshifting |
title_sort | mutations in domain iv of elongation factor ef-g confer −1 frameshifting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749637/ https://www.ncbi.nlm.nih.gov/pubmed/33008838 http://dx.doi.org/10.1261/rna.077339.120 |
work_keys_str_mv | AT niblettdustin mutationsindomainivofelongationfactorefgconfer1frameshifting AT nelsoncharlotte mutationsindomainivofelongationfactorefgconfer1frameshifting AT leungcalvins mutationsindomainivofelongationfactorefgconfer1frameshifting AT rexroadgillian mutationsindomainivofelongationfactorefgconfer1frameshifting AT cozyjake mutationsindomainivofelongationfactorefgconfer1frameshifting AT zhoujie mutationsindomainivofelongationfactorefgconfer1frameshifting AT lancasterlaura mutationsindomainivofelongationfactorefgconfer1frameshifting AT nollerharryf mutationsindomainivofelongationfactorefgconfer1frameshifting |