Cargando…
Adaptive Time Propagation for Time-dependent Schrödinger equations
We compare adaptive time integrators for the numerical solution of linear Schrödinger equations where the Hamiltonian explicitly depends on time. The approximation methods considered are splitting methods, where the time variable is split off and advanced separately, and commutator-free Magnus-type...
Autores principales: | Auzinger, Winfried, Hofstätter, Harald, Koch, Othmar, Quell, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer India
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749873/ https://www.ncbi.nlm.nih.gov/pubmed/33381631 http://dx.doi.org/10.1007/s40819-020-00937-9 |
Ejemplares similares
-
Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes
por: Auzinger, Winfried, et al.
Publicado: (2016) -
Integral boundary conditions for the time-dependent Schrödinger equation
por: Ermolaev, A M, et al.
Publicado: (1999) -
A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation
por: Wells, Daniel, et al.
Publicado: (2019) -
Beam propagation management in a fractional Schrödinger equation
por: Huang, Changming, et al.
Publicado: (2017) -
Particle physics and the Schrödinger equation
por: Grosse, Harald, et al.
Publicado: (1997)