Cargando…

Preliminary optimisation of a simplified sample preparation method to permit direct detection of SARS-CoV-2 within saliva samples using reverse-transcription loop-mediated isothermal amplification (RT-LAMP)

We describe the optimisation of a simplified sample preparation method which permits rapid and direct detection of SARS-CoV-2 RNA within saliva, using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Treatment of saliva samples prior to RT-LAMP by dilution 1:1 in Mucolyse™, fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Howson, Emma L.A., Kidd, Stephen P., Armson, Bryony, Goring, Alice, Sawyer, Jason, Cassar, Claire, Cross, David, Lewis, Tom, Hockey, Jess, Rivers, Samantha, Cawthraw, Saira, Banyard, Ashley, Anderson, Paul, Rahou, Sabah, Andreou, Michael, Morant, Nick, Clark, Duncan, Walsh, Charlotte, Laxman, Shailen, Houghton, Rebecca, Slater-Jefferies, Joanne, Costello, Paula, Brown, Ian, Cortes, Nicholas, Godfrey, Keith M., Fowler, Veronica L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750029/
https://www.ncbi.nlm.nih.gov/pubmed/33358911
http://dx.doi.org/10.1016/j.jviromet.2020.114048
Descripción
Sumario:We describe the optimisation of a simplified sample preparation method which permits rapid and direct detection of SARS-CoV-2 RNA within saliva, using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Treatment of saliva samples prior to RT-LAMP by dilution 1:1 in Mucolyse™, followed by dilution in 10 % (w/v) Chelex© 100 Resin and a 98 °C heat step for 2 min enabled detection of SARS-CoV-2 RNA in positive saliva samples. Using RT-LAMP, SARS-CoV-2 RNA was detected in as little as 05:43 min, with no amplification detected in 3097 real-time reverse transcription PCR (rRT-PCR) negative saliva samples from staff tested within a service evaluation study, or for other respiratory pathogens tested (n = 22). Saliva samples can be collected non-invasively, without the need for skilled staff and can be obtained from both healthcare and home settings. Critically, this approach overcomes the requirement for, and validation of, different swabs and the global bottleneck in obtaining access to extraction robots and reagents to enable molecular testing by rRT-PCR. Such testing opens the possibility of public health approaches for effective intervention during the COVID-19 pandemic through regular SARS-CoV-2 testing at a population scale, combined with isolation and contact tracing.