Cargando…

PV cells and modules – State of the art, limits and trends

The key components of photovoltaic (PV) systems are PV modules representing basic devices, which are able to operate durably in outdoor conditions. PV modules can be manufactured using different materials by different fabrication technologies. The main criteria supporting or limiting a successful pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Benda, Vítězslav, Černá, Ladislava
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750313/
https://www.ncbi.nlm.nih.gov/pubmed/33364478
http://dx.doi.org/10.1016/j.heliyon.2020.e05666
_version_ 1783625456805740544
author Benda, Vítězslav
Černá, Ladislava
author_facet Benda, Vítězslav
Černá, Ladislava
author_sort Benda, Vítězslav
collection PubMed
description The key components of photovoltaic (PV) systems are PV modules representing basic devices, which are able to operate durably in outdoor conditions. PV modules can be manufactured using different materials by different fabrication technologies. The main criteria supporting or limiting a successful placement of particular technologies on the market is the cost of electricity produced by PV systems. The Levelized Cost of Energy (LCOE) method takes into account the investment cost, the operating costs, and the total energy produced during the system service life. The influence of price, efficiency and service life of PV modules on LCOE (together with the availability of materials) sets limits for applicable technologies. Over the past 15 years a categorisation of generations of PV cell and module technology groups has been frequently used. The main features of individual technology groups are discussed from the view of the above criteria. Currently, PV modules are required to have: efficiency higher than 14%, price below 0.4 USD/W(p) and service life of more than 15 years. At present, the wafer-based crystalline silicon technologies have best met the criteria due to their high efficiency, low cost and long service time; and due to the abundance of materials, they are set to lead in future PV power generation.
format Online
Article
Text
id pubmed-7750313
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-77503132020-12-23 PV cells and modules – State of the art, limits and trends Benda, Vítězslav Černá, Ladislava Heliyon Review Article The key components of photovoltaic (PV) systems are PV modules representing basic devices, which are able to operate durably in outdoor conditions. PV modules can be manufactured using different materials by different fabrication technologies. The main criteria supporting or limiting a successful placement of particular technologies on the market is the cost of electricity produced by PV systems. The Levelized Cost of Energy (LCOE) method takes into account the investment cost, the operating costs, and the total energy produced during the system service life. The influence of price, efficiency and service life of PV modules on LCOE (together with the availability of materials) sets limits for applicable technologies. Over the past 15 years a categorisation of generations of PV cell and module technology groups has been frequently used. The main features of individual technology groups are discussed from the view of the above criteria. Currently, PV modules are required to have: efficiency higher than 14%, price below 0.4 USD/W(p) and service life of more than 15 years. At present, the wafer-based crystalline silicon technologies have best met the criteria due to their high efficiency, low cost and long service time; and due to the abundance of materials, they are set to lead in future PV power generation. Elsevier 2020-12-15 /pmc/articles/PMC7750313/ /pubmed/33364478 http://dx.doi.org/10.1016/j.heliyon.2020.e05666 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review Article
Benda, Vítězslav
Černá, Ladislava
PV cells and modules – State of the art, limits and trends
title PV cells and modules – State of the art, limits and trends
title_full PV cells and modules – State of the art, limits and trends
title_fullStr PV cells and modules – State of the art, limits and trends
title_full_unstemmed PV cells and modules – State of the art, limits and trends
title_short PV cells and modules – State of the art, limits and trends
title_sort pv cells and modules – state of the art, limits and trends
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750313/
https://www.ncbi.nlm.nih.gov/pubmed/33364478
http://dx.doi.org/10.1016/j.heliyon.2020.e05666
work_keys_str_mv AT bendavitezslav pvcellsandmodulesstateoftheartlimitsandtrends
AT cernaladislava pvcellsandmodulesstateoftheartlimitsandtrends